Investigating the Mechanisms and Therapeutic Applications of Chalcones

Authors

  • Ahsan Ali Khan Nowshera Medical College, Nowshera, Pakistan
  • Muhammad Haris Nowshera Medical College, Nowshera, Pakistan
  • Sobia Haris Nowshera Medical College, Nowshera, Pakistan
  • Farah Deeba Nowshera Medical College, Nowshera, Pakistan
  • Mashal Tamsil Khyber Teaching Hospital, Peshawar, Pakistan
  • Tayaba Basharat Nowshera Medical College, Nowshera, Pakistan
  • Muhammad Jehangir Khan Makka Medical Center, Nowshera, Pakistan

Keywords:

Chalcones, therapeutic efficacy, mechanisms, analgesic activity

Abstract

Introduction: Chalcones, are a group of organic compounds containing two aromatic rings bridged by a three-carbon -a,

?; unsaturated carbonyl system. This attracted much attention because of their versatility in pharmacological profiles.

Aims & Objectives: To investigate the therapeutic efficacy of a particular chalcone derivative, namely (E)-1-(4- bromophenyl)-3-(4-chlorophenyl) prop-2-ene-1-one.

Place and Duration of Study: It was conducted in the Pharmacology Laboratory of the Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, and the University of Malakand for about one year.

Material & Method: This was a lab-based experimental study. The therapeutic efficacy of a chalcone derivative, (E)-1- (4-bromophenyl)-3-(4-chlorophenyl) prop-2-ene-1-one was assessed through an experiment on pain and inflammation in mice. Claisen-Schmidt condensation reaction and spectroscopic tools were used.

Results: Pharmacological data proved a significant decrease in pain and inflammation as compared to Diclofenac Sodium. Reduction of 75.20% in acetic acid-induced writhing as compared to 84.4% with Diclofenac. After 3 hours, there was 67.08% reduction in edema.

Conclusion: This study provides evidence that chalcone derivatives in moderation may be effective and safer than present-day drugs that address pain and inflammation. This result may need to be further clinically related to potentially translate them in different patient populations in terms of efficacy and safety.

References

Zhang Y, Zhang W, Wang Q, Xing J. Recent advances in the anti-cancer effects of chalcones. Bioorg Med Chem. 2020;28(2):115240. doi:10.1016/j.bmc.2019.115240

Singh P, Singh R, Bhardwaj V, Sharma M, Kumar A. Chalcones: A promising anticancer scaffold. J Mol Struct. 2021;1225:129184. doi:10.1016/j.molstruc.2020.129184

Kumar S, Kumar A, Sharma M, Pandey AK. Pharmacological activities of chalcones: A review. Chem Biol Drug Des. 2022;99(2):140-155. doi:10.1111/cbdd.14026

Thapa P, Lee YR. Anticancer and antioxidant effects of natural and synthetic chalcones. Molecules. 2019;24(5):756. doi:10.3390/molecules24050756

Ali I, Lone MN, Aboul-Enein HY. Recent advances in synthetic chalcones as anticancer agents. Med Res Rev. 2020;40(5):1795-1821. doi:10.1002/med.21668

Kumar V, Sharma M, Kumari P, Saini N, Verma M, Bhatia R. Structural modifications in chalcone derivatives: potential anticancer agents. Med Chem Res. 2021;30(7):1411-1426. doi:10.1007/s00044-021-02702-7

Rai R, Prakash O, Yadav VK, Tripathi CKM. Chalcones: Promising molecules for anticancer drug discovery. Future Med Chem. 2020;12(19):1737-1762. doi:10.4155/fmc-2020-0065

García A, García-Vilas JA, Quesada AR, Medina MÁ. Anti-angiogenic activity of chalcones in experimental models: promising results for cancer therapy. Chem Biol Interact. 2021;339:109291. doi:10.1016/j.cbi.2020.109291

Singh VK, Yadav R, Tripathi A, Kumar S, Kushwaha HN. Recent developments in the pharmacological profile of chalcones: A systematic review. Eur J Med Chem. 2023;239:114709. doi:10.1016/j.ejmech.2022.114709

Al-Othman ZA, Al-Warthan AA, Ali I. Recent progress of chalcones as potential therapeutic agents: A review. Expert Opin Ther Pat. 2019;29(9):697-711. doi:10.1080/13543776.2019.1648588

da Cunha Xavier J, de Almeida-Neto FW, Rocha JE, Freitas TS, Freitas PR, de Araujo AC, et al. Spectroscopic analysis by NMR, FT-Raman, ATR-FTIR, and UV-Vis, evaluation of antimicrobial activity, and in silico studies of chalcones derived from 2-hydroxyacetophenone. J Mol Struct. 2021;1241:130647. doi:10.1016/j.molstruc.2021.130647

Vaghela JH, Shah JH, Patel JH, Purohit BM. Comparison of safety and analgesic efficacy of diclofenac sodium with etodolac after surgical extraction of third molars: a randomized, double-blind, double-dummy, parallel-group study. J Dent Anesth Pain Med. 2020;20(1):19-27. doi:10.17245/jdapm.2020.20.1.19

Cuesta SA, Meneses L. The role of organic small molecules in pain management. Molecules. 2021;26(13):4029. doi:10.3390/molecules26134029

Fouad AI, Alqarni MH, Devi S, Singh A, Alam A, Alam P, et al. Analgesic action of catechin on chronic constriction injury-induced neuropathic pain in Sprague–Dawley rats. Front Pharmacol. 2022;13:895079. doi:10.3389/fphar.2022.895079

Ou Z, Zhao J, Zhu L, Huang L, Ma Y, Ma C, et al. Anti-inflammatory effect and potential mechanism of betulinic acid on ?-carrageenan-induced paw edema in mice. Biomed Pharmacother. 2019;118:109347. doi:10.1016/j.biopha.2019.109347

Hoxha M. What about COVID-19 and arachidonic acid pathway? Eur J Clin Pharmacol. 2020;76:1501-1504. doi:10.1007/s00228-020-02920-6

Malafoglia V, Ilari S, Vitiello L, Tenti M, Balzani E, Muscoli C, et al. The interplay between chronic pain, opioids, and the immune system. Neuroscientist. 2022;28(6):613-627. doi:10.1177/10738584211060135

Dan W, Dai J. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur J Med Chem. 2020;187:111980. doi:10.1016/j.ejmech.2019.111980

Rudrapal M, Khan J, Dukhyil AA, Alarousy RM, Attah EI, Sharma T, et al. Chalcone scaffolds, bio precursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules. 2021;26(23):7177. doi:10.3390/molecules26237177

Su CM, Wang L, Yoo D. Activation of NF-?B and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Sci Rep. 2021;11(1):13464. doi:10.1038/s41598-021-92869-5

Zhang YL, Zhang WX, Yan JQ, Tang YL, Jia WJ, Xu ZW, et al. Chalcone derivatives ameliorate lipopolysaccharide-induced acute lung injury and inflammation by targeting MD2. Acta Pharmacol Sin. 2022;43(1):76-85. doi:10.1038/s41401-021-00530-y

Guazelli CF, Fattori V, Ferraz CR, Borghi SM, Casagrande R, Baracat MM, et al. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis. Chem Biol Interact. 2021;333:109315. doi:10.1016/j.cbi.2021.109315

Mahesha P, Shetty NS. Naphthyl–based chalcone derivatives: A multifaceted player in medicinal chemistry. ChemistrySelect. 2024;9(19). doi:10.1002/slct.202400522

Siddiqa A, Tajammal A, Irfan A, Azam M, Munawar MA, Hardy RS, et al. Synthesis, molecular docking, bio-evaluation, and quantitative structure-activity relationship of new chalcone derivatives as antioxidants. J Mol Struct. 2023;1277:134814. doi:10.1016/j.molstruc.2023.134814

Al-ghulikah HA, Mughal EU, Elkaeed EB, Naeem N, Nazir Y, Alzahrani AY, et al. Discovery of chalcone derivatives as potential ?-glucosidase and cholinesterase inhibitors: Effect of hyperglycemia in paving a path to dementia. J Mol Struct. 2023;1275:134658. doi:10.1016/j.molstruc.2023.134658

Afridi HH, Shoaib M, Al-Joufi FA, Shah SW, Hussain H, Ullah A, et al. Synthesis and investigation of the analgesic potential of enantiomerically pure schiff bases: A mechanistic approach. Molecules. 2022;27(16):5206. doi:10.3390/molecules27165206

Downloads

Published

2024-09-30

How to Cite

1.
Ahsan Ali Khan, Muhammad Haris, Sobia Haris, Farah Deeba, Mashal Tamsil, Tayaba Basharat, Muhammad Jehangir Khan. Investigating the Mechanisms and Therapeutic Applications of Chalcones. Proceedings S.Z.M.C [Internet]. 2024 Sep. 30 [cited 2024 Oct. 4];38(3):185-92. Available from: http://proceedings-szmc.org.pk/index.php/szmc/article/view/560