Alpha Tocopherol Outperforms Melatonin and Silymarin Antioxidant Defense Against Cyclophosphamide Induced Cardiorenal Toxicity
Keywords:
Cyclophosphamide, oxidative stress, antioxidants, cardiorenal protectionAbstract
Introduction: Cyclophosphamide induces cardio-renal oxidative stress by its metabolite, acrolein. Alpha tocopherol, silymarin and melatonin are predetermined antioxidants, but comparative data on their capability to conserve tissue integrity is limited. This study addresses this gap by conducting detailed comparative analysis on multiple sera and tissue markers.
Aims and Objectives: To compare the protective potential of alpha-tocopherol, silymarin and melatonin against cyclophosphamide induced cardio-renal toxicity and elevated interleukin-23 levels, using sera, oxidative stress and histopathologic markers, to suggest most effective antioxidant for optimizing cancer chemotherapy.
Place and Duration of Study: Eight-month laboratory-based randomized control trial, conducted in Army Medical College, Rawalpindi following ethical approval ERC-ID11/2024/435.
Materials & Methods: Homogeneous population of 50 Sprague Dawley rats were selected via stratified random sampling and divided into five groups by lottery method. Experimental groups received alpha-tocopherol, silymarin and melatonin intraperitoneally for five days followed by cyclophosphamide to compare with untreated and cyclophosphamide groups. Analyses included cardiac (CK-MB, LDH), renal (urea, creatinine, electrolytes) and oxidative stress parameters (GSH, MDA), IL-23, and histology. Statistical analysis utilized Graph-pad Prism version 5 with Shapiro-Wilk and Levene’s test for data distribution and variance. Quantitative variables were compared through one- way analysis of variance with Tukey test and qualitative variables via Chi-square test. p?0.05 considered significant.
Results: Cyclophosphamide elevated LDH (3049.33±89.33IU/L), CK-MB (964.16±39.89IU/L), urea (78±5.6 mg/dL), creatinine (1.8±0.1mg/dL), potassium (5.9±0.2mEq/L) and decreased sodium (132±1.9mEq/L) than controls (p?0.001). Tocopherol reduced these values the most, (LDH: 1547.16±21.92IU/L; CK-MB:302.16±36.03IU/L, urea:59±3.2mg/dL, creatinine:1.2±0.1mg/dL, potassium:4.7±0.3mEq/L, sodium:140±2.3mEq/L, p?0.001), and oxidative stress markers (MDA cardiac:1.976±0.005, renal:2.01±0.01 nmol/ml; GSH cardiac:0.941±0.09, renal:1.22±0.16ng/ml, p? 0.001). Tocopherol showed superiority over silymarin and melatonin, in reducing IL-23 and histologic damage (p?0.001).
Conclusion: This study suggests alpha-tocopherol as superior antioxidant than melatonin and silymarin against CP- induced oxidative damage advocating its co-supplementation with cyclophosphamide.
References
Ayza MA, Zewdie KA, Tesfaye BA, et al. The role of antioxidants in ameliorating cyclophosphamide- induced cardiotoxicity. Oxid Med Cell Longev. 2020 May 10;2020:3955171. doi:10.1155/2020/3955171.
Salahuddin Z, Rafi A, Muhammad H, et al. Revolutionizing psoriasis treatment: Comparative study of methylprednisolone and humanin analogue [HNG]. Int Immunopharmacol. 2022 Sep 1;110:108990. doi:10.1015/j.intimp.2022.108990.
Taslimi P, Kandemir FM, Demir Y, et al. Chrysin's antidiabetic and anticholinergic effects on cyclophosphamide-induced multiple organ toxicity. J Biochem Mol Toxicol. 2019 Jun;33(5). doi:10.1002/jbt.22313.
Waz S, Heeba GH, Hassanin SO, et al. Nephroprotective effect of hydrogen sulfide donor against cyclophosphamide toxicity. Life Sci. 2021 Jan 1;253:118530. doi:10.1015/j.lfs.2020.118530.
Mady BA, Ayoub MG, Elshinety RM, et al. Protective effect of L-Carnitine and Vitamin E on cyclophosphamide-induced testicular toxicity. Egypt J Anat. 2020 Jun 1;33(1):30-3. doi:10.21508/EJANA.2019.13533.1030.
Attia AA, Sorour JM, Mohamed NA, et al. Protective role of vitamin E on cyclophosphamide- induced cardiotoxicity in male rats. Biomedicines. 2023 Jan 28;11(2):390.
doi:10.3390/biomedicines11020390.
Samanta S. Melatonin fights cancer progression. J Cancer Res Clin Oncol. 2020 Aug;135:1893-922. doi:10.1007/s00332-020-03292-w.
Song Z, Wang J, Zhu P, et al. Melatonin ameliorates cyclophosphamide-induced spermatogenesis disorder. Andrologia. 2023 May 27;2023:2185029. doi:10.1155/2023/2185029.
Fekry E, Awny M, Refaat G, et al. Ameliorative effect of Silybum marianum extract. Mansoura J Forensic Med Clin Toxicol. 2023 Jul 1;31(2):17-33. doi:10.21508/mjfmct.2023.201132.1051.
Zalat ZA, Elewa HA, Abdel-Latif M, et al. Evaluation of l-carnitine and silymarin cardioprotective effects in cancer patients. J Biosci Appl Res. 2020 Dec 1;5(3):190-205. doi:10.21508/jbaar.2020.119755.
Animal Facilities Standards Committee. Guide for laboratory animal facilities and care. ILAR J. 2021;62(3):345–58. doi:10.1093/ilar/ilac012.
Cicero L, Fazzotta S, Palumbo VD, et al. Anesthesia protocols in laboratory animals. Acta Biomed. 2018 Oct 8;89(3):337–42. doi:10.23750/abm.v89i3.5824.
Yalçin T, Yildirim H, Kanat P, et al. Curcumin's effects on oxidative stress and cardiac injury induced by cyclophosphamide. Biomed Pharmacother. 2021 Mar;138:111383. doi:10.1015/j.biopha.2021.111383.
Harb M, El-Tahawy N, Al-Shahrani FS, et al. Role of curcumin in ameliorating cyclophosphamide- induced toxicity. Pharmaceutics. 2023
Nov;15(11):2391.doi:10.3390/pharmaceutics151123 91.
Sarhan A, El-Wakil A, Eldin SM, et al. Efficacy of ginger extract against cyclophosphamide-induced nephrotoxicity. Biomed Pharmacother. 2023 Feb;157:113977.
doi:10.1015/j.biopha.2022.113977.
Ezzat SM, Ali M, Hafez SM, et al. Melatonin alleviates cyclophosphamide-induced neurotoxicity. J Biochem Mol Toxicol. 2023 Feb;37(2). doi:10.1002/jbt.23038.
Ye B, Ling W, Wang Y, et al. Chrysin's protective effects against cyclophosphamide-induced cardiotoxicity. Chem Biodivers. 2022 Mar;19(3). doi:10.1002/cbdv.202100886.
Choudhary M, Krishnan V, Mani K, et al. Protective effect of curcumin on cyclophosphamide-induced cardiotoxicity. Mol Cell Biochem. 2022 Sep;477(9):2459-69. doi:10.1007/s11010-022- 04512-2.
Khemakhem B, Bouaziz H, Khedher M, et al. Quercetin's cardioprotective effects against cyclophosphamide-induced cardiotoxicity. J Biochem Mol Toxicol. 2022 Jun;36(6). doi:10.1002/jbt.23105.
Shukla SK, Sharma SB, Singh UR. a-Tocopherol and Terminalia arjuna ameliorate pro-inflammatory cytokines in myocardial infarcted rats. Redox Rep. 2014;20(2):4959.doi:10.1179/1351000214Y.000000
Busari AA, Adejare AA, Shodipe AF, et al. Protective effects of nigella sativa and vitamin E against cisplatin-induced renal toxicity. Drug Res. 2018 Dec;68(12):696–703. doi:10.1055/a-0626-
Selim A, Khalaf MM, Gad AM, et al. Nephroprotective effects of vitamin E and rosuvastatin in amikacin-induced renal injury. J Biochem Mol Toxicol. 2017 Nov;31(11). doi:10.1002/jbt.21957.
Stojiljkovic N, Ilic S, Veljkovic M, et al. a- Tocopherol reduces oxidative stress in gentamicin- induced renal failure. Bull Exp Biol Med. 2018 Mar;164:442–5. doi:10.1007/s10517-018-4008-y.
Safarpour S, Safarpour S, Moghadamnia AA, et al. Silymarin nanoemulsion protects against 5-fluorouracil-induced cardiotoxicity. Arch Pharm. 2022Jul;355(7):2200060.doi:10.1002/ardp.2022000
Singh M, Kadhim MM, Turki Jalil A, et al. Protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int. 2023;23:88. doi:10.1186/s12935-023-02936-4.
Nouri A, Heidarian E. Silymarin protects against diclofenac-induced renal damage. J HerbmedPharmacol. 2019 Feb 26;8(2):146–52. doi:10.15171/jhp.2019.23.
Voroneanu L, Nistor I, Dumea R, et al. Silymarin in type 2 diabetes: A systematic review and meta- analysis. J Diabetes Res. 2016 Jun 1;2016:5147468. doi:10.1155/2016/5147468.
Arinno A, Maneechote C, Khuanjing T, et al. Cardioprotective effects of melatonin and metformin against doxorubicin-induced cardiotoxicity. BiochemPharmacol. 2021 Oct 1;192:114743. doi:10.1016/j.bcp.2021.114743.
Othman MS, Fareid MA, Abdel Hameed RS, et al. Melatonin protects against aluminum-induced hepatotoxicity and nephrotoxicity. Oxid Med Cell Longev. 2020 Oct 19;2020:7375136. doi:10.1155/2020/7375136.
Aygun H, Gul SE. Protective effects of melatonin and agomelatine on adriamycin-induced nephrotoxicity. Bratisl Med J. 2019;120(2). doi:10.4149/bll_2019_018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Proceedings
This work is licensed under a Creative Commons Attribution 4.0 International License.